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Polynomial Solutions for Coupled U(1)-Gauge 
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We point out numerical solutions in polynomial form to the field equations 
derived by Garfinkle and Laguna for U(1)-gauge cosmic strings. With these 
solutions we evaluate the second-order term for the deficit angle produced by the 
string. 

1. INTRODUCTION 

A cosmic string is a one-dimensional energy distribution defined by an 
extreme length as well as a great linear density. Models to describe elemen- 
tary particle physics by means of gauge theories with spontaneous symmetry 
breaking have given rise to an intensive study of this kind of string. 

An infinite-length cosmic string is a static, cylindrically symmetric con- 
figuration of a self-interacting scalar field which is minimally coupled to a 
gauge field. Since this string has stress energy, it couples to the gravitational 
field and its gravitational effects are calculable by Einstein's equations (see, 
for instance, Zel'dovich, 1980; Vilenkin, 1981a; Linde, 1979, and references 
therein). 

This subject has been considered by many authors. Vilenkin (1981b) 
studied the gravitational properties o f  vacuum domain walls and strings in 
the linear approximation of general relativity. Gott (1985) obtained the exact 
interior and exterior solutions to Einstein's equations, for vacuum strings. 
Garfinkle (1985) investigated the properties of infinite-length cosmic strings 
by considering the full coupled equations for the metric, the scalar, and U(I ) 
gauge fields. Laguna-Castilho and Matzner (1987a) proposed an approach 
for an infinite-length U(1) cosmic string as a cylindrical and singular shell 
enclosing a region of false vacuum. They pointed out the consistency of this 
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model with the full coupled equations for the metric and the scalar and 
gauge fields in curved space-time. Laguna-Castilho and Matzner (1987b) 
obtained numerical solutions for this approach. Garfinkle and Laguna 
(1989) considered the contribution of the gravitational self-interaction to 
the mass linear density p and to the deficit angle A~b of a long, static, straight 
cosmic string. 

In this paper we consider Einstein-scalar-gauge equations derived by 
Garfinkle and Laguna (1989) and point out their solutions by numerical 
techniques. In a different way, we expand the corrections to Aq~ in polyno- 
mial forms of the fields to find its second-order terms. In Section 2 we review 
briefly the formalism for self-gravitating U(1)-gauge cosmic strings and in 
Section 3 we present numerical results and conclusions. 

2. STANDARD COSMIC STRING LAGRANGIAN AND 
FIELD EQUATIONS 

We consider cosmic strings that consist of a U(1)-gauge vector field Aa 
and a complex scalar field �9 = R ( p )  e i~', with a Lagrangian (G = c = h = 1) 

S f  = - �89 V , , R W  R - �89 R 2 (Va ~/+ eA,,) (W ~ + eA") 

; t (R2_ 2.2 t ~  ~ b  
- - - -  0 ) --"41~ab 1"~ (1) 

8 

where F ~ b = V , A b - - V b A , ;  e, )~, and 1/ are constants; and m ] = e 2 q  z and 
m 2 = A.r/2 are the masses of the vector and scalar fields, respectively. In the 
above expression e and ~ are the coupling constants concerning the U(I) 
and scalar fields, and 7/defines the energy scale of a symmetry breaking. For 
most grand unification scales 7/~_ 10 -4. In these cases the thickness of the 
string is 6-~ 10 -28 cm and p -~ 10 -7. On the electroweak scale 6-~ 10 -~5 cm 
and p "-~ 10 -33. The term V(l~l)=,~ (~2_ r/2)2 in equation (1) is an effective 
potential which is supposed to have axial symmetry, i.e., V= V ( R ) .  

To deal with Einstein's equations, a static and cylindrically symmetric 
space-time metric is assumed 

ds 2 = - e  A dt 2 + e s dz 2 + e c d~  2 + dp  2 (2) 

where A, B, and C are functions of the radial coordinate p. 
For a vacuum string there is a barrier in the effective potential V([~I) 

between the false vacuum I~[ = 0 and the global vacuum 1~[ = 1/. The ratio 
a = rn~/m,D = e/ , , /~  measures the comparison between the radii of the core 
false vacuum and the magnetic field tube. 
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Now we assume that the values of the scalar and U(I) gauge fields have 
no significant variations. At the core of the string, any change in the values 
of the field variables takes place at a cylindrical shell whose thickness is 
much smaller than the radius of the string. 

With the normalization of the radial coordinate given by 

r = x/~ rip = m . p  = m,4a-lp (3) 

the radius of the core false vacuum is r~'-" 1 and the radius of the magnetic 
field tube is r,~ '-" a -  i. 

Since a cosmic string is a configuration of scalar and gauge fields, to 
find its gravitational effects it is not sufficient to consider the stress energy 
and solve for the metric. In order to be consistent, we have to find the metric 
by solving simultaneously the coupled Einstein-scalar-gauge equations. With 
the normalization given in equation (3) and the definitions 

A. = 1_ P ( p ) V . ~ -  1_ V.V (4a) 
e e 

X =  q-JR (4b) 

K= m .  e A + c/2 = ~ oH  (4c) 

the field equations are the coupled nonlinear differential equations 
(Garfinkle and Laguna, 1989) 

(KA')'-4~r r /2 I -K ( X 2 - 1 ) 2 + 2 a - 2 K  - '  e2A(P')21 = 0 (5) 

K"-4rcq2[-2K -I e2Ap~x2- �88  2 -  1)2+ a-2K -I e2A(P')2]=O (6) 

K(KX ' ) ' -X[ �89  2 -  1)+ e2Ap 2] =0 (7) 

K(e2AK- IP ' )  ' -  a 2 e2AX2p = 0 (8)  

where the prime denotes d/dr. 

3. NUMERICAL RESULTS AND CONCLUSIONS 

To search numerical solutions for equations (5)-(8) in the case of grand 
unification scales, we have imposed the following boundary conditions: 

(i) At the core of the string (r =0), the scalar and vector fields must 
be null, which leads to X(O)=O, P(O)= 1, and V(C~)=s 4. 

(ii) Normalization of a Killing basis [(d,)", (0-) ~, (0~)"] provides the 
boundary conditions A(0)=B(O)=0 for the metric fields along 
the z axis and also limp~0 = p2, leading to the Minkowski metric. 
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(iii) 

(iv) 

(v) 

(vi) 

(vii) 

(viii) 

(ix) 

(x) 

Furthermore, the fields A and B must be equal everywhere, i.e., 
the string possesses explicit Lorentz invariance along its axis. 
With the above conditions and the definitions given in equations 
(4), it is easy to see that K(0)= 0. 
Since d~/dr=e~C'T1X ' must be null as r--.oo, we impose 
x ' ( ~ )  =0. 
The effective potential and the magnetic field must be null at r = 
oo; then X(oo) = 1 and e (oo)=0 .  
A Coulomb gauge-like condition V- Aa = 0, demanded at r = 0 in 
equation (4a), leads to P ' (0 )=  0. 
At the surface of the string, V(+)=fl,%r/4, where + = + 0  
(0 < (I)o< r/) and fl_> 1. 
To guarantee tha t  near the z axis the space-time metric is smooth 
and that the normalization of the Killing field (a,)  ~ is preserved, 
we must have eC (O)=0  and l imp_ .o(d /dp)eC(O)= 1. This leads, 
after a straightforward calculation, to K'(O)  = 1. 

To recover the Minkowski metric far from the string axis, we 
must have A(oc) = 0. 
For a weak-field approximation 172 -~ 0, equations (5) and (6) give 
K =  r, A = 0, and A'(0)= 0. These values lead from equations (7) 
and (8) to Nielsen and Olesen's (1978) equations. 

Although we have argued that solutions exist, nothing can be said about 
their stability. The numerical technique we employed was the finite-difference 
method. First, an expansion of the fields X and P around the point r = 0 was 
supposed, by means of 

X =  a~r + a2 r2 + a3 r3 + a4 r4 + asr 5 + a6 r6 
(9) 

P = 1 - b2r ~ + b3 r3 + b4r 4 + b :  5 + b6 r6 + b7r 7 

leading to a~ =X'(0)  and b2 = - � 8 9  Imposing the conditions X(0)=0,  
P(0) = 1, and P'(0) = 0, we searched for solutions such that for r ~ oo 

X = I - C e  -r 

and (10) 

P = c e - , f i  r 

by expanding up to r = 9 [notice that Garfinkle (1985) considered the range 
0-3, assuming a = 1.0 in a different technique]. All other boundary condi- 
tions mentioned before for X and P have been taken into account here. The 
same technique as above was used to determine A and K. The polynomial 
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forms are given below for different values of a : 
(i) a = 0 . 5 :  

X = 2 . 0 5  x 10-6r5-6 .36  x lO-4r4+O.O157r 3 

- O. 15r 2 + 0 . 6 3 7 r -  0.0275 

P =  1.10 x 10-4r5-  3.05 • 10-3r4-  O.031r 3 

- 0 . 1 2 4 r 2 + 4 . 6 2  • lO-3r+  1.0 (11) 

A = ( - 1 . 9 8  x 10-4 r6 -1  - 6.04 x 10-3r 5 - 0.0708r 4 

+ 0 . 3 8 7 r a - 0 . 8 7 8 r 2 - 4 . 2 1  x 10-3r+0.027)  • 10 -8 

K=r 

(ii) a =  1.0: 

X = - 8 . 8 4  x lO-4r4+O.O21ra-o.188rE+O.716r-O.O13 

P = 2.570 • 10-4r 5 -  6.180 x 10-3r 4 + 0.0501.3 

- 0 .132r2-  0.196r + 1.05 
(12) 

A = (3.510 x 10-st  6 - 1.590 x 10-3r 5 + 0.027r 4 - 0.224r 3 

+ 0 . 8 6 7 r 2 - 0 . 7 0 3 r  +0.129)  x 10 -15 

g ~ r  

(iii) a = 1.5: 

X - -  - 1 . 3 0 0  x 1 0 - 7 r 6  d - 1.390 • 10-4r5-4 .200  x 1 0 - 3 r 4 q -  0 . 0 5 0 r  3 

- 0 . 2 9 6 r  2 + 0 . 8 6 8 r -  0.029 

P = 2.620 • 10-st  7 -  9.350 • 10-4r 6 + 0.013r 5 -  0.099r 4 

+ 0.386r 3 - 0.672r 2 + 0.030r + l (13) 

.4 = ( - 1 . 0 1 0  x 10-4r5-  7.620 • lO-3r4+O.217r3 

- 1.940r2+ 7.130r - 1.210) x 10  -9  

K=r 

A compar i son  between the ma in  analytical  and  numerica l  values for the 
above solut ions is shown in Table  I. Numerica l  values cor responding  to 

r ~ ' ~  have been considered for r =  9. The plots of  these solut ions are shown 

in Figures 1-5. 
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Table 1 

Analytical Numerical 
value value a = 0.5 a = 1 a = 1.5 

X(O) = 0 X(O) -0.0275 -0.0133 -0.0292 
X(oo) = I X(9) 0.9490 0.9304 0.9122 

X ' ( ~ )  = 0 X'(9) -0.0352 -0.0698 -0.0190 
P(O) = 1 P(O) 1 1.o5 1 

P'(O) = 0 P ' (O)  0.0046 - 0 . 1 9 6 0  0.0305 

P(ov) = 0 P(9) 0.0809 -0.0357 0.3388 
A(0 )=0  A(0) 2.77 • 10 -I~ 1.29 • 10 -16 -1.21 x 10 -9 

A ' (0 )=0  A'(0) -4.21 x 10 -11 -7.03 x 10 -m6 7.13 x 10 -9 
A(oo) = 0 A(9) -2.09 x l0 -s 3.95 x 10 -Is 8.05 • 10 -9 

K(O) = 0  K(O) 0 0 0 
K'(O) = 1 K'(O) 1 I 1 

1I(0) = 3.q 4 1I(0) 0.9984Z~/'~ 0 .9996Zq 4 0.9982Zq 4 

V(oo)=0 1I(9) 0.0098Zr/4 0.0180~,q 4 0.0281Zr/4 

The deficit angle produced by the string is given in terms of  its linear 
density/2 by (Garfinkle, 1985) 

+n [~176 2 

I: =8n'/2 + -Jr e-AK(A')2dr=8rc/2+lr~2 (14) 
2 

where 62 is its second-order term. To determine this term numerically, we 
have expanded e -A up to the fourth order and performed the above integral 
from 0 to 9, considering the different values of a. 

Fig. 1. 
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1" 
Magnitudes of the scalar and gauge fields as functions of r for different values of a.  
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Fig. 2. Plot of .4 as a function of r for a = 0.5. 
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Fig. 3. Plot of .4 as a function of r for a = l.O, showing the small numerical change of .4 in 
this case. 
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Fig. 4. Plot of A as a function of r for a = 1.5. 
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Fig. 5. 
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Plot of K as a function of r for different values of a. 

This leads to the results 

(i) a =0.5  62 = 1.028 x 10 -16 

(ii) a = 1.0 62=3.856 X 10 -30 

(iii) a = 1.5 62 = 1.339 • 10 -17 

The above corrections for a = 0.5 and a = 1.5 are of  the same order of  
1/4, as pointed out by Garfinkle and Laguna (1989). However, for the transi- 
tion case (a  = 1.0), A must be a constant, according to Laguna-Casti lho and 
Matzner (1987b), which leads to 62 = 0. Our numerical results show clearly 
for A a change of about  10 -15 in the range 0-9 leading to a second-order 
correction 62 ~,, 10 -30 for A~b, which is reasonable. Moreover,  the functions 
A and K are near their flat-space values for small 17 in the above case. 
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